Partitioning a graph into minimum gap components
نویسندگان
چکیده
منابع مشابه
Partitioning into Colorful Components by Minimum Edge Deletions
The NP-hard Colorful Components problem is, given a vertex-colored graph, to delete a minimum number of edges such that no connected component contains two vertices of the same color. It has applications in multiple sequence alignment and in multiple network alignment where the colors correspond to species. We initiate a systematic complexity-theoretic study of Colorful Components by presenting...
متن کاملPartitioning graphs into balanced components
We consider the k-balanced partitioning problem, where the goal is to partition the vertices of an input graph G into k equally sized components, while minimizing the total weight of the edges connecting different components. We allow k to be part of the input and denote the cardinality of the vertex set by n. This problem is a natural and important generalization of well-known graph partitioni...
متن کاملPartitioning a graph into alliance free sets
A strong defensive alliance in a graph G = (V, E) is a set of vertices A ⊆ V , for which every vertex v ∈ A has at least as many neighbors in A as in V − A. We call a partition A, B of vertices to be an alliance-free partition, if neither A nor B contains a strong defensive alliance as a subset. We prove that a connected graph G has an alliance-free partition exactly when G has a block that is ...
متن کاملPartitioning a graph into convex sets
Let G be a finite simple graph. Let S ⊆ V (G), its closed interval I[S] is the set of all vertices lying on a shortest path between any pair of vertices of S. The set S is convex if I[S] = S. In this work we define the concept of convex partition of graphs. If there exists a partition of V (G) into p convex sets we say that G is p-convex. We prove that is NP -complete to decide whether a graph ...
متن کاملPartitioning a graph into degenerate subgraphs
Let G = (V,E) be a graph with maximum degree k ≥ 3 distinct from Kk+1. Given integers s ≥ 2 and p1, . . . , ps ≥ 0, G is said to be (p1, . . . , ps)-partitionable if there exists a partition of V into sets V1, . . . , Vs such that G[Vi] is pi-degenerate for i ∈ {1, . . . , s}. In this paper, we prove that we can find a (p1, . . . , ps)-partition of G in O(|V |+|E|)-time whenever 1 ≥ p1, . . . ,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronic Notes in Discrete Mathematics
سال: 2016
ISSN: 1571-0653
DOI: 10.1016/j.endm.2016.10.009